

HOW RELIABLE ARE YOUR RESULTS?

Reference Materials

Defined genomic DNA from microorganisms relevant for hygiene and contamination control.

Genomic DNA Extracts

Application

- Conventional and qPCR
- Specificity testing

These preparations contain genomic DNA extracted from low passage and defined microorganisms, prepared by phenol/chloroform extraction and subsequent column absorption methods. The DNA extract was partially sequenced to confirm identity. Titration was done by optical density measurement against a weight calf thymus DNA standard.

Content

1 vial with genomic DNA extract with 10 ng +/- 2 ng, freeze-dried 1 vial with 200 μl 10 mM Tris-HCl buffer, pH 8.5, for dissolving the DNA

Order information

Cat. No.	Species	Cat. No.	Species	Cat. No.	Species
51-0116	Acholeplasma laidlawii	51-1368	Fluoribacter bozemanae (syn. Legionella bozemanae)	51-0113	Mycoplasma salivarium
2127-30007	Acinetobacter bamanii			51-0124	Mycoplasma synoviae
2128-30187	Aeromonas hydrophila	2131-05934	Geobacillus stearothermophilus	2135-10036	Neisseria meningitidis
2101-00819	Aspergillus fumigatus			2136-13387	Proteus vulgaris
51-0031	Bacillus cereus	2132-30104	Klebsiella pneumoniae	51-0071	Pseudomonas aeruginosa
51-0010	Bacillus subtilis	2133-70603	70603 Klebsiella pneumoniae, ESBL+	2116-04479	Proteus mirabilis
2129-02046	Bacillus thueringiensis	-		51-7058	Salmonella enterica
51-3415	Bordetella parapertussis	51-1723	Lactobacillus acidophilus	2117-30121	Serratia marcescens
51-5571	Bordetella pertussis	51-1370	Legionella dumofii	2137-04782	Shigella flexneri
2130-07288	Burkholderia capacia	51-1533	Legionella jordanis	2138-05570	Shigella sonnei
2102-04688	Campylobacter jejuni	51-0101	Legionella pneumophila	51-0164	Spiroplasma citri
51-1386	Candida albicans	51-1514	Legionella pneumophila subsp. fraseri	51-0231	Staphylococcus aureus
2103-11226	Candida glabrata			51-0044	Staphylococcus epidermidis
2104-11947	Candida guiliermondii	51-1515	Legionella pneumophila subsp. pascullei	2118-20328	Staphylococcus hominis
2105-70624	Candida haemulonii			2119-20263	Staphylococcus
2106-30039	Citrobacter freundii	51-3361	Methicilin-resistant Staphylo- coccus aureus (MRSA)		haemolyticus
2125-90874	Candida tropicalis			2122-20480	Streptococcus bovis
2107-04595	Citrobacter koseri	2134-30164	Morganella morganii	2123-06176	Streptococcus dysgalactiae
51-0792	Clostridium acetobutylicum	51-0030	Micrococcus Iuteus	2126-20523	Streptococcus mutans
2108-00756	Clostridium perfringens	51-0129	Mycoplasma arginini	51-0566	Streptococcus pneumoniae
51-0053	Enterobacter aerogenes	51-0162	Mycoplasma arthritidis	2139-20068	Streptococcus sanguinis
2110-30054	Enterobacter cloacae	51-0117	Mycoplasma fermentans	2120-20229	Staphylococcus saprophyticus
2111-20680	Enterococcus casseliflavus	51-0115	Mycoplasma gallisepticum		
2112-30633	Enterococcus durans	51-0195	Mycoplasma genitalium	2121-50170	Stenotrophomonas maltophilia
51-0478	Enterococcus faecalis	51-0111	Mycoplasma hominis		
2113-20477	Enterococcus faecium	51-0130	Mycoplasma hyorhinis	51-0177	Ureaplasma urealyticum
2114-20160	Enterococcus hirse	51-0112	Mycoplasma orale	2140-04780	Yersinia enterocolitica
51-0083	Escherichia coli	51-1746	Mycoplasma penetrans	2141-08992	Yersinia pseudotuberculosis
2115-08579	Escherichia coli 0157:H7	51-0119	Mycoplasma pneumoniae		

PCR Quantification Standards

Application

- Conventional and qPCR
- Standard curves, evaluation of assay performance
- Preparation of dilution series for quantification
- Low titer (e.g. 3 x LOD₉₅) controls

Standardization and quantification of nucleic acid detection is a difficult task as there are no reliable standards for low nucleic acid copy numbers. Detection methods such as PCR and NASBA are prone to inhibition caused by many substances commonly found in plant and animal tissues, food matrices and extraction solutions. When co-purified with DNA or RNA, inhibitors reduce amplification efficiency, causing an underestimation of the quantity of target nucleic acid or even false-negative results.

Minerva Biolabs calibration reagents contain genomic DNA extracted from low passage and defined microorganisms. The DNA is manufactured by means of phenol/chloroform extraction with ethanol precipitation and subsequent column absorption methods. The DNA extract was partially sequenced and the sequence aligned to confirm identity. Titration was done after photometric quantification of the preparation standard and dsDNA fluorometric quantification against a synthetic standard.

For the first time, qPCR user are able to include a precise low count of DNA copies in their assays, providing them with a true value for the estimation of detection limits and the comparison of different detection methods.

Content

1 vial with DNA, 1x10⁸ genomes, freeze-dried 3 vials with 2 ml of Tris-HCl buffer, 10 mM, pH 8.5., for dissolving the DNA and preparing dilutions

Order information				
Cat. No.	Species			
52-0116	Acholeplasma laidlawii			
52-5571	Bordetella pertussis			
52-0083	Escherichia coli			
52-0101	Legionella pneumophila			
52-0129	Mycoplasma arginini			
52-0117	Mycoplasma fermentans			
52-0115	Mycoplasma gallisepticum			
52-0130	Mycoplasma hyorhinis			
52-0112	Mycoplasma orale			
52-0119	Mycoplasma pneumoniae			
52-0124	Mycoplasma synoviae			
52-0164	Spiroplasma citri			
52-0071	Pseudomonas aeruginosa			

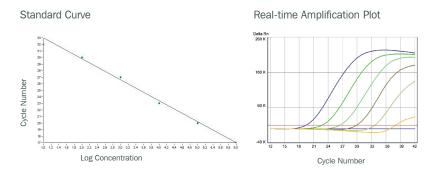


Fig. Quantification of Mycoplasma pneumoniae DNA. Logarithmic plot of fluorescence vs cycle number (Venor®GeM qEP, platform: ABI Prism® 7500). Template DNA ranging from 2x10⁵ - 2 genome equivalents.

10CFU[™] Sensitivity Standards

For validating robustness and detection limit of molecular mycoplasma test methods in presence of the sample matrix.

Application

European Pharmacopoeia 2.6.7 "Mycoplasma" requires a sensitivity of 10 CFU/ml sample volume for NAT-based methods like PCR to replace the traditional culture method. This feature of the test method must be shown by the performing lab as part of the robustness testing in presence of the sample matrix. As most cell culture labs and production facilities cannot accept vital mycoplasma in their facility or do not have access to a microbiology lab able to cultivate mycoplasma, these preparations allow safe and reliable validation of the procedure.

The mycoplasma have been cultivated in culture broth described in EP 2.6.7, titrated immediately in culture broth and plated for quantification in colony forming units (CFU/ml). Each dilution series has been performed in multiple by different operators for highest precision. The mycoplasma broth was harvested in the early logarithmic phase of the growth to avoid a high ratio of dead mycoplasma particles and correspondingly a high GU*:CFU ratio. All strains have been obtained from official culture collections and cultivated in low passages.

Each vial contains 10 CFU of inactivated mycoplasma. By adding the sample matrix of interest a sample according to EP 2.6.7 is prepared which has to be tested positive by the method applied. Obviously, the inactivated sample material is not suitable for the culture method anymore. As a result of proficiency tests on DNA amplification methods for mycoplasma detection it became obvious that in means of highest sensitivity DNA extraction is indispensible. The extract can directly be used for PCR.

* Please note: This standard material was not titrated for genome copies (GU) as EP 2.6.7 does not provide sensitivity limits on DNA level. No guarantee for a particular GU:CFU ratio is provided with this product and the ratio may vary from lot to lot.

Package Content

3 vials with 10 CFU of the corresponding mycoplasma species 2 negative control vials

For the mycoplasma set: 2 vials with 10 CFU of each mycoplasma species listed in the EP 2.6.7 (18 vials in total) 2 negative controls

Catalogue Number

102-6003	Mycoplasma fermentans
102-7003	Mycoplasma hyorhinis
102-8003	Acholeplasma laidlawii
102-9003	Spiroplasma citri
102-0002	Mycoplasma Set
	102-7003 102-8003 102-9003

Minerva Biolabs GmbH

Koepenicker Strasse 325 . D-12555 Berlin . Germany Tel. +49 (0)30 2000 437-0 . Fax +49 (0)30 2000 437-9 info@minerva-biolabs.com . www.minerva-biolabs.com © 2016 Minerva Biolabs GmbH MB_FL27.04EN

Disclaimer: Venor is a registered trademark of Minerva Biolabs GmbH. 10CFU is a trademark of Minerva Biolabs GmbH. ABI Prism is a registered trademark of Applera Corporation or its subsidiaries in the US and certain other countries.

Our la

Our local Distributor